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The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) 3C-like protease (3CLpro or
Mpro) is an attractive target for the development of anti-SARS drugs because of its crucial role in the viral
life cycle. In this study, a compound database was screened by the structure-based virtual screening approach
to identify initial hits as inhibitors of SARS-CoV 3CLpro. Out of the 59 363 compounds docked, 93 were
selected for the inhibition assay, and 21 showed inhibition against SARS-CoV 3CLpro (IC50 e 30 µM), with
three of them having common substructures. Furthermore, a search for analogues with common substructure
in the Maybridge, ChemBridge, and SPECS_SC databases led to the identification of another 25 compounds
that exhibited inhibition against SARS-CoV 3CLpro (IC50 ) 3-1000µM). These compounds, 28 in total,
were subjected to 3D-QSAR studies to elucidate the pharmacophore of SARS-CoV 3CLpro.

Introduction

Severe acute respiratory syndrome (SARS), an epidemic that
rapidly spread in Asia, North America, and Europe resulted in
severe illness and deaths in early 2003.1,2 This disease is mainly
spread by respiratory droplets containing the virus, and many
studies show that a previously unrecognized coronavirus called
SARS-CoV (SARS-associated coronavirus) could be the cause
of SARS.3-5 The genome of SARS-CoV contains 11-14 major
open-reading frames and encodes several proteins, including the
replicase polyproteins, S (spike protein), polymerase, M (mem-
brane protein), N (nucleocapsid protein) and E (small envelope
protein).6-8

SARS-CoV 3C-like protease (SARS-CoV 3CLpro), as a part
of the replicase polyproteins, cleaves a functional polypeptide
and, consequently, leads to the maturation of SARS-CoV.
Because of its functional importance in the SARS-CoV replica-
tion cycle, SARS-CoV 3CLpro is considered a potential target
to develop novel anti-SARS drugs.9 Previous homology model-
ing studies for SARS-CoV 3CLpro 9-11 made it possible to design
inhibitors using various computer-aided drug design methods.11-17

For example, an 8-mer peptide was docked into the 3D model
of SARS-CoV 3CLpro, and the possible binding profile between
SARS-CoV 3CLpro and this substrate was elucidated.18 In
another case, a pharmacophore model generated from a small
peptide was used as a query for screening possible SARS-CoV
3CLpro inhibitors through several chemical databases.19,20 Fur-
thermore, the crystal structures of the coronavirus 3CL proteases
from the transmissible gastroenteritis virus (TGEV)21 and human
coronavirus 229E (HCoV-229E)9 were available to facilitate
inhibitors design. Recently, the crystal structure of SARS-CoV

3CLpro (pdb ID: 1Q2W and 1UK4) was independently solved
by two groups. Rao et al. reported the structure of SARS-CoV
3CLpro in complex with a covalently attached substrate-analogue
inhibitor, thus providing insights into the substrate binding site.22

Although a number of non-peptide inhibitors of SARS-CoV
3CLpro, such as bifunctional aryl boronic acids,23 isatin deriva-
tives,24 polyphenols,25 etacrynic acid analogues,26 cinanserin,12

and other chemically diverse small molecules27-30 have been
identified, only a few of these show potent inhibitory activity.
Here, we report the discovery of a novel family of potent SARS-
CoV 3CLpro inhibitors by virtual screening and 3D-QSAR
studies. Virtual (in silico) screening by the molecular docking
of chemical databases in combination with 3D-QSAR studies
is one of the most powerful approaches used to discover small
molecule inhibitors. The present study aimed to design novel
non-peptide inhibitors against SARS-CoV 3CLpro using the
knowledge obtained from the 3D structure of SARS-CoV
3CLpro. We conducted a virtual screening study using the
DOCK4.0.2.31 program to identify novel small molecule inhibi-
tors of SARS-CoV 3CLpro. The lead compounds were subse-
quently analyzed by several 3D-QSAR techniques to fully
explore the pharmacophore of SARS-CoV 3CLpro and to guide
further lead optimization.

Materials and Methods

Virtual Screening. The X-ray structure of the complex of SARS-
CoV 3CLpro (pdb code 1UK4)22 with an octapeptidyl CMK inhibitor
was chosen as the template in the virtual screening. The DOCK4.0.2
program31 was used to screen a commercially available small
molecule database, the Maybridge database, obtained from the
Maybridge Chemical Company (Tintagel, Cornwall, England). The
rule of five was applied as a filter to select the drug-like compounds
in the virtual screening procedure. The database, containing 59 363
compounds, was screened and scored on a 64-processor Hpcserv2
Linux cluster with AMD Athlon MP 2000+ 1.7 GHz CPUs.
Residues within a radius of 6 Å around the center of the CMK
peptide inhibitor were defined as the active site to construct a grid
for the virtual screening. The active site included residues His41,
Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, His163,
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Met165, Glu166, and His172. Before docking, Kollmann-all atom
charges32 were assigned to the protein atoms, and Gasteiger-Hu¨ckel
charges33-35 were assigned to compound atoms using the SYBYL
6.9.1 program.36 The position and conformation of each compound
were optimized first by the anchor fragment orientation and then
by the torsion minimization method implemented in the DOCK4.0.2
program. Fifty configurations and the maximum of 100 anchor
orientations for each compound were generated, and all of the
docked configurations were energy minimized by 100 iterations.

SARS-CoV 3CLpro Inhibition Assay. The SARS-CoV 3CLpro

inhibition assay was performed on the basis of the published
procedure.27,37 As described by Kuo et al..37, the gene encoding
the SARS-CoV 3CLpro was cloned from the viral whole genome
by using PCR with the forward primer 5′-GGTATTGAGGGTCG-
CAGTGGTTTTAGG-3′ and the reverse primer 5′-AGAGGAGAGT-
TAGAGCCTTATTGGAAGGTAACACC-3′ into the pET32Xa/
LIC vector. The FXa cleavage site was included in these primers.
The plasmid was transformed intoE. coli BL21 to express the His-
tagged protease. The purified SARS-CoV 3CLpro, cleaved by FXa
protease to remove the His-tag, has an authentic sequence without
extra amino acids, as confirmed byN-terminal sequencing and mass
spectroscopy. All of the kinetic measurements were performed in
20 mM bis[(2-hydroxyethyl)amino]tris(hydroxymethyl)methane (pH
7.0) at 25°C. Enhanced fluorescence was monitored at 538 nm
with excitation at 355 nm by using a fluorescence plate reader
upon the cleavage of the fluorogenic substrate peptide (Dabcyl-
KTSAVLQ-SGFRKME-Edans). The initial velocities of the inhib-
ited reactions of 50 nM SARS-CoV 3CLpro and 6µM fluorogenic

substrate were plotted against the inhibitor concentrations to obtain
the IC50 by using the following equation

whereA[I] is the enzyme activity with inhibitor concentration [I],
andA[0] is the enzyme activity without the inhibitor.

CoMFA, CoMSIA, and Pharmacophore 3D-QSAR Models.
Twenty-eight inhibitors were divided into training and test sets
containing 18 and 10 inhibitors, respectively, for 3D-QSAR studies.
The compounds of the test set were selected first on the basis of
published rules,38 and they were as follows: compounds4, 7, 8,
11, 12, 14, 15, 18, 21, and23 (Table 1). The CoMFA steric and
electrostatic potential fields were calculated using the SYBYL 6.9.1
program with a regularly spaced grid of 2.0 Å. A C.3 carbon atom
with a radius of 1.52 Å and a charge of+1.0 was used as a probe
to calculate the steric and electrostatic energies between the probe
and the molecules using the Tripos force field.39 The truncation
for both the steric and electrostatic energies was set to(30 kcal/
mol. The CoMFA steric and electrostatic fields were scaled by the
default value given in the program.

A C.3 atom with a radius of 1.0 Å and a charge of+1.0 was
used as the probe to calculate the CoMSIA similarity indices defined
by Klebe40 with a spaced grid of 2.0 Å. The similarity indices were
calculated using the Gaussian-type distance dependence between
the probe and each atom of the molecules. The attenuation factor

Table 1. The Chemical Structures of 28 Inhibitors and Their Corresponding IC50 Values against SARS-CoV 3CLpro

A[I] ) A [0] × {1 - [ [I]

([I] + IC50)]}

3486 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 12 Tsai et al.



R was set as 0.3. Both CoMFA and CoMSIA results were cross-
validated using the SYBYL PLS (partial-least-squares) module. The
minimum-sigma (column filtering) was set to 2.0 kcal/mol to
improve the signal-to-noise ratio by omitting the grid points of
energy variation less than this threshold. The CoMFA and CoMSIA
descriptors were treated as independent variables, whereas the pIC50

values were treated as dependent variables in the PLS regression
analyses to derive the 3D-QSAR models. The number of compo-
nents used in the final nonvalidated model was optimized to give
the highest cross-validatedr2(q2) and the lowest standard error of
prediction. The noncross-validated models were assessed by the
conventional correlation coefficientr2, standard error of prediction,
andF-values.

The training set for CoMFA and CoMSIA studies was used for
constructing pharmacophore models by the Catalyst 4.9 program.41

All of the parameters used were default values except for the Uncert
value, which was set to 1.6 or 1.5. Each compound was energy
minimized using the CHARMM-like force field42 within the
Catalyst 4.9 program and subjected to a conformational analysis
using the Poling algorithm.43 The maximum number of conformers
allowed for each compound was set to 250. On the basis of the
CoMSIA results, four pharmacophore features, E (excluded vol-
umes), H (hydrophobic), D (hydrogen-bond donor), and A (hydrogen-
bond acceptor group), were selected to generate hypotheses. The
significance of the best hypothesis generated was cross-validated
using the CatScramble module of the Catalyst 4.9 program. To
obtain a 95% confidence level, 19 random spreadsheets were
generated and then analyzed by the HypoGen module using the
same parameters as those in the initial run.

Binding Free Energy Calculation.To calculate the binding free
energy, SARS-CoV 3CLpro and 28 inhibitors were parametrized
by the Parm9944 and the AMBER force field (GAFF).45 The partial
charges of each compound were calculated using the HF/6-31G(d)/
RESP method46 and were fitted by the multiple RESP approach.
The series of calculations were conducted by AMBER8.47 The
binding free energies for the 28 inhibitors were computed as follows

whereHgasis the gas-phase energy,Gsolv is the solvation free energy,
and Sconf is the sum of translational, rotational, and vibrational
entropies determined by normal-mode analysis.Hgas included the
electrostatic and van der Waals interactions between the protein
and the inhibitor. A distance-dependent dielectric was used to
compute electrostatic interactions, and a continuum model correction
for energy was used to compute van der Waals interactions. Both
interactions were calculated in AMBER8 using the default param-
eters.Gsolv was computed using the GB model developed by Tsui
and Case.48 The hydrophobic contribution to the solvation free
energy and the implicit solvation free energy were computed from
the solvent-accessible area (SA) by Paul Beroza’s Molsurf module
of AMBER. The MM/GBSA approach was used to estimate the
Hgas+ Gsol terms in eq 1. The protein complexes were solvated by
the GB model, and instead of neutralizing the whole system by
explicit cations, the salt contribution for calculating the generalized
Born energy was set at 0.1 M. All His residues were protonated at
the epsilon nitrogen (Nε) except for His41 and His172, which were
protonated at the epsilon and delta nitrogens (Nδ). For the rest of
the acidic and basic residues in the protein, the default protonation
states in AMBER8 were applied. The translational and rotational
entropies were calculated as described by McQuarrie,49 whereas
the vibrational entropy was calculated by a normal-mode analysis
using the Nmode module of AMBER. For the simulation of each
complex, geometry optimization was performed by 200 steps of
steepest descent followed by conjugated gradient minimization to
converge to an energy criterion of 10-1 kcal‚mol-1‚Å-1.

Results and Discussion

Virtual Screening. The binding site of SARS-CoV 3CLpro/
substrate-analouge CMK complex structure (pdb code:1UK4)22

was used as the target site to perform virtual screening on the
Maybridge database, a database of approximately 60 000
commercially available small molecules. The binding site
includes the catalytic center (His41 and Cys145) and several
subsites, designated as S1(His163, Glu166, Cys145, Ser144,
Gly143, and Phe140), S2 (Cys145 and Thr25), S3 (Met165,
Met49, and His41), S4 (Glu166), and S5 (Gln189, Met165, and
Glu166) (Figure 1). The catalytic dyad characterized by Cys145
and His41 is located inside subsites S1, S2, and S3. The virtual
screening was conducted using the DOCK4.0.2 program, and
the docked molecules were ranked by the two scoring functions
implemented in the program. The first one was the internal
ligand-receptor binding energy, which measures the sum of
the van der Waals and electrostatic energies. The second one
was the electrostatic energy between the docked ligand and the
protein. The top 200 compounds ranked by each scoring function
were further screened by analyzing their H-bonding patterns
using IDEA2.0 (http://www.breadth.com.tw). Because H-bond-
ing interactions play an important role in ligand binding, as
revealed by the protease-substrate complex structure, the top
ranked compounds making more than two H bonds with the
protease were selected for bioassay. The number of compounds
preliminarily screened for the inhibition assay was 93. Of these,
21 compounds (hit rate of 22%) were found to exhibit SARS-
CoV 3CLpro with IC50 values less than 30µM. A careful analysis
of these active compounds revealed that three of the compounds
shared similar chemical structure and a core structure of
N-phenyl-2-(2-pyrimidinylthio)acetamide (Figure 2) was identi-
fied. The core structure was then used as a query structure to
search for analogues in Maybridge, ChemBridge, and SPEC-
S_SC databases. This resulted in identifying 28 structural
analogues, including the three from the initial round, to be
evaluated for the SARS-CoV SARS 3CLpro inhibitory activity
(Table 1). The series of compounds exhibited inhibition with
IC50 values in the range of 3-1000µM and were subjected to
further 3D-QSAR studies.

CoMFA and CoMSIA Models. To proceed with the 3D-
QSAR studies, compound10 (Table 1), with the highest score
ranked by program DOCK4.0.2 and DOCK5.1.1, was chosen
as a template, and the rest of the compounds were aligned with
it. The core structure for the 28 compounds,N-phenyl-2-(2-

G ) Hgas+ Gsolv - TSconf (1)

∆Gbinding ) ∆Gcomplex- ∆Greceptor- ∆Gligand (2)

Figure 1. Active site of SARS-CoV 3CLpro with the bound hexapep-
tidyl CMK peptide inhibitor. The subsites that complement substrate
binding are designated as S1 (His163, Glu166, Cys145, Ser144, Gly143,
and Phe140), S2 (Cys145 and Thr25), S3 (Met165, Met49, and His41),
S4 (Glu166), and S5 (Gln189, Met165, and Glu166).
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pyrimidinylthio)acetamide, served as the correspondence points
in the alignment (Figure 2). The aligned training set containing
18 inhibitors was then analyzed by the SYBYL CoMFA,
CoMSIA, and PLS algorithm. The results of the CoMFA and
CoMSIA models are summarized in Table 2. The best CoMFA
result yielded a leave-one-out (loo) validatedr2(q2

loo) of 0.689,
q2

cv of 0.673, andr2 of 0.987. The CoMSIA model was
constructed in a stepwise manner, and the results are presented
in Table 2. Five different field indices (steric, denoted as S;
electrostatic, denoted as E; hydrophobic, denoted as H; H-bond
acceptor, denoted as A; and H-bond donor, denoted as D) were
employed one by one or as a combination of various fields to
perform the CoMSIA study. The S field gave a better statistical
result (q2

cv ) 0.674) compared to those of other fields and, thus,
was selected for further analyses by systematically adding the
other four fields. A combination of the S and E fields improved
theq2

cv value to 0.763, which was applied to the next cycle of
calculations where each of the rest of the three fields (H, D,
and A) was sequentially added to the combined S and E fields.
The combination of S, E, and H fields produced the best
CoMSIA model with aq2

cv value of 0.767 (Table 2). There
was no apparent improvement by a further addition of either
the D or the A fields to the combined S+ E + H fields or
upon the combination of all five fields. Therefore, the interac-
tions of the inhibitors in the training set with the target protein
SARS-CoV 3CLpro is best described by a combination of S, E,
and H fields. A decomposition of the combined S+ E + H
fields gave the contributions of 42.6%, 40.5%, and 17.0% from
the S, E, and H fields, respectively. This result indicated that
the S and E fields dominated the present CoMSIA model,
although the addition of the H field could slightly improve it.

The experimental and predicted biological activities by the
best CoMFA and CoMSIA models for each training set inhibitor

are listed in Table 3, whereas those for the test set are given in
Table 4. The template structure,10, was also included in the
training set. The correlation coefficients (r2), a measure of the
correlation between the predicted versus experimental activities,
for the training set and test set given by the best CoMFA model
were 0.987 and 0.886, respectively. The best CoMSIA model
yielded the correlation coefficients (r2) of 0.992 and 0.940 for
the training set and test set, respectively. The results reveal that
the activities predicted by the CoMFA and CoMSIA models
are in agreement with the experiment data, demonstrating the
predictive ability of both models.

Mapping the CoMFA and CoMSIA Models onto the
Protein Active Site. The contour maps generated by the
CoMFA and CoMSIA models were mapped on the active site
of SARS-CoV 3CLpro and analyzed with respect to the subsites
of the protease. The most active compound, compound1 and
the template compound, compound10, are displayed with the
contour maps to aid in visualization and discussion. Both the
CoMFA and CoMSIA contour maps identify favored regions
for steric interactions (displayed as green contours in both
CoMFA and CoMSIA maps), which are around binding pocket
S5 (Figures 1 and 3). The CoMFA and CoMSIA contour maps
also show that there are disfavored regions for steric interactions
(displayed as yellow contours) around the 3,5-dichloro-benzene
group of1 (Figure 3a-1 and 3b-1) and the benzene sulfonamide
group of10 (Figure 3c-1 and 3d-1), pointing toward the binding
pocket S2. The favored regions for hydrophobic interactions
identified by the CoMSIA model are displayed as cyan contours
for both 1 and10 (Figure 3b-1 and 3d-1). These are correctly
mapped onto the hydrophobic surface of the protease (displayed
as a gray surface in Figure 3b-2 and 3d-2). In comparison, the
disfavored hydrophobic regions of these two compounds, shown
as white contours in the CoMSIA map (Figure 3b-1 and 3d-1),
indicate that the substitution with polar groups in this region
could improve the binding to the protein. In the CoMFA map,
the red contours representing the favorable negative charge area
suggest that the substitution with electron rich groups is
preferable around the pyrimidine of1 (Figure 3a-1) and dihydro-
pyrimidine of 10 (Figure 3c-1). In addition, the blue contours
representing the favorable positive charge area are also correctly
mapped onto the electrostatic regions of the protease (Figure
3a-2 and 3c-2).

Pharmacophore Generation with the Catalyst Program.
The structural features, including hydrophobic, hydrogen-bond

Table 2. Summary of CoMFA and CoMSIA Results Obtained from the Training Seta

cross validation noncross validation
CoMFA

SARS-CoV3CLpro18 inhibitors

CoMSIA
SARS-CoV 3CLpro18

inhibitors PC q2
cv CF SEE r2 F

q2
loo 0.689 S 2 0.674 2 0.216 0.923 89.446

q2
cv 0.673 E 3 0.340 2 0.216 0.927 59.557

CF 2 H 4 0.613 2 0.161 0.963 83.600
r2 0.987 D 1 -0.177 2 0.686 0.164 3.131
SEE 0.095 A 1 -0.456 2 0.637 0.279 6.180
PC 4 S+ E 4 0.763 2 0.097 0.987 238.212
F 248.719 S+ H 5 0.629 2 0.116 0.982 131.326
steric contribution 62.3% S+ D 4 0.611 2 0.233 0.921 38.057
electrostatic contribution 37.7% S+ A 3 0.301 2 0.225 0.921 54.390

S + E + H 5 0.767 2 0.077 0.992 298.523
S + E + D 5 0.705 2 0.085 0.990 245.926
S + E + A 5 0.494 2 0.085 0.990 249.856
S + E + D + A 5 0.401 2 0.079 0.992 289.995
S + E + H + D 5 0.611 2 0.075 0.993 321.358
S + E + H + A 5 0.647 2 0.070 0.993 362.985
all fields 5 0.559 2 0.085 0.990 246.172

a q2
loo: leave-one-out;q2

cV : cross-validation; CF: column filtering;r2: conventional; SEE: standard error of estimate; PC: principal components;F:
F-values; S: steric field; E: electrostatic field; H: hydrophobic field; A: H-bond acceptor; and D: H-bond donor.

Figure 2. Core structure identified by three original hits. The core
structure highlighted in blue served as the correspondence points for
the structural alignment of 28 inhibitors to construct the CoMFA and
CoMSIA models. G1, G2, G3, G4, G5, G6, and G7 could be any
substitute or hydrogen atom.
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acceptor, hydrogen-bond donor, and excluded volume, were
selected on the basis of the best CoMSIA results (Table 2) to
generate the pharmacophore hypotheses for SARS-CoV 3CLpro

inhibitors using the Catalyst 4.9 program. Among the 10
hypotheses generated by Catalyst 4.9, the Hypo1 hypothesis was
the best pharmacophore hypothesis as characterized by the
lowest error cost, highest cost difference (∆cost), lowest root-
mean-square deviation, and the best correlation coefficient
(Table 5). The configuration cost of Hypo1 hypothesis was only
10.4 bits, which was also smaller than the criterion of 17 bits
for a good hypothesis. The Hypo1 hypothesis was then validated
using the CatScramble module of the Catalyst 4.9 program. The
validation proceeded with a random reassignment of activity
values, that is, the generation of random spreadsheets among
the molecules of the training set. To achieve a confidence level
of 95% (significance) 1-((1+0)/(19+1)) × 100%) 95%),
19 random spreadsheets (random hypotheses) were generated,
and the corresponding statistics are listed in Table 6. The
validation clearly shows that the Hypo1 hypothesis is not
generated by chance because its statistics are far more superior
to those of the 19 random hypotheses generated (Table 6).

The Hypo 1 hypothesis was also evaluated for its capability
to predict compound activities using the same training and test
sets as those in the CoMFA and CoMSIA studies. The
HypoRefine module of the Catalyst 4.9 program was used to
further refine the Hypo1 hypothesis. The activities predicted
by the refined Hypo1 hypothesis (Tables 3 and 4) were labeled
according to the activity scales defined as+++ for highly active

(IC50 < 50 µM), ++ for moderately active (IC50 ) 50-450
µM), and+ for inactive (IC50 > 450µM). The accuracy of the
hypothesis can be judged by the agreement of the predicted
activities with the measured ones (Tables 3 and 4). The
prediction accuracy of the Hypo1 hypothesis for the training
set is 100% because all of the activity scales of the predicted
ones were consistent with the measured ones (Table 3).
However, the prediction accuracy for the test set is 80% because
the activity scales of two compounds,11and23, were in conflict
with the measured ones (Table 4). Linear regression of the
predicted versus measured activities for the training and test
sets yielded correlation coefficients of 0.966 and 0.875,
respectively.

Table 3. Measured and Predicted Activities of the Training Set Obtained from CoMFA, CoMSIA, and Hypo1

CoMFA CoMSIA catalyst pharmacophore hypothesis Hypo1

SARS-CoV 3CLpro

inhibitors
act

pIC50

pred
pIC50

pred
pIC50

act IC50

(µM)
pred IC50

(µM) error
act activity

scalea
pred activity

scalea uncert principal supplier

1 5.52 5.45 5.52 3 6.3 +2.1 +++ +++ 1.6 2 Maybridge
2 5.00 5.20 5.04 10 15 +1.5 +++ +++ 1.6 0 Maybridge
3 4.95 4.94 4.95 11 21 +1.9 +++ +++ 1.6 0 Maybridge
5 4.85 4.91 4.90 14 8.3 -1.7 +++ +++ 1.6 0 Maybridge
6 4.82 4.74 4.79 15 9.6 -1.6 +++ +++ 1.6 0 Maybridge
9 4.52 4.31 4.33 30 41 +1.4 +++ +++ 1.6 0 ChemBridge
10 4.39 4.37 4.38 40 29 -1.4 +++ +++ 1.6 2 ChemBridge
13 4.22 4.17 4.18 60 55 -1.1 ++ ++ 1.6 0 ChemBridge
16 3.69 3.69 3.79 200 310 +1.6 ++ ++ 1.6 0 ChemBridge
17 3.69 3.66 3.67 200 130 -1.6 ++ ++ 1.6 0 Maybridge
19 3.69 3.73 3.66 200 82 -2.4 ++ ++ 1.6 0 Maybridge
20 3.69 3.71 3.65 200 270 +1.4 ++ ++ 1.6 0 SPECS SC
22 3.52 3.60 3.59 300 290 -1.0 ++ ++ 1.6 0 ChemBridge
24 3.52 3.52 3.60 300 450 +1.5 ++ ++ 1.6 0 ChemBridge
25 3.45 3.46 3.48 350 260 -1.3 ++ ++ 1.6 0 ChemBridge
26 3.39 3.37 3.36 400 340 -1.2 ++ ++ 1.6 0 Maybridge
27 3.30 3.24 3.26 500 450 -1.1 + + 1.5 1 ChemBridge
28 <3.00 3.06 2.98 >1000 1000 +1.0 + + 1.5 1 ChemBridge

a Activity scale: highly active (<50 µM, +++), moderately active (50-450 µM, ++), and inactive (>450 µM, +).

Table 4. Measured and Predicted Activities of the Test Set Obtained from CoMFA, CoMSIA, and Hypo1

CoMFA CoMSIA
catalyst

pharmacophore hypothesis Hypo1

SARS-CoV 3CLpro

inhibitors
act

pIC50

pred
pIC50

pred
pIC50

act IC50

(µM)
pred IC50

(µM) error
act activity

scalea
pred activity

scalea supplier

4 4.92 5.00 4.84 12 11 -1.1 +++ +++ Maybridge
7 4.82 4.75 4.90 15 15 -1.0 +++ +++ Maybridge
8 4.82 4.77 4.84 15 6.3 -2.4 +++ +++ Maybridge
11 4.39 4.13 4.02 40 350 +8.8 +++ ++ Maybridge
12 4.34 4.17 4.05 45 42 -1.1 +++ +++ ChemBridge
14 4.22 4.21 3.85 60 130 +2.1 ++ ++ ChemBridge
15 4.00 3.79 4.04 100 440 +4.4 ++ ++ SPECS SC
18 3.69 3.30 3.44 200 230 +1.2 ++ ++ ChemBridge
21 3.60 3.63 3.30 250 290 +1.2 ++ ++ Maybridge
23 3.52 3.78 3.31 300 760 +2.5 ++ + ChemBridge

a Activity scale: highly active (<50 µM, +++), moderately active (50-450 µM, ++), and inactive (>450 µM, +).

Table 5. Information of Statistical Significance and Predictive Power
Presented in Cost Values for the Top 10 Hypotheses Generateda

hypothesis
no. total cost ∆cost

rms
deviation

correlation
(r)

1 64.320 95.564 0.919 0.966
2 77.009 82.875 1.506 0.906
3 77.873 82.011 1.537 0.902
4 78.190 81.694 1.547 0.901
5 81.873 78.011 1.654 0.886
6 83.518 76.366 1.726 0.875
7 87.336 72.548 1.845 0.856
8 87.549 72.335 1.852 0.855
9 93.743 66.141 2.013 0.826
10 94.749 65.135 2.059 0.817

a Null cost of top-ten score hypotheses is 159.884 bits. Fixed cost is
56.547 bits. Configuration cost is 10.456 bits.
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Mapping the Hypo1 Hypothesis onto the Protein Active
Site. The Hypo1 hypothesis displayed with template structure
10 was superimposed on the active site of SARS-CoV 3CLpro

(Figure 4). As shown in Figure 4, the hydrophobic feature
represented by blue spheres was correctly mapped onto subsite

S5, where hydrophobic interactions are preferable as represented
by gray surfaces. The hydrogen-bond donor features, represented
by magenta spheres, were also correctly mapped onto subsite
S2, near Thr25 (Figure 4). Furthermore, the hydrogen-bond
acceptor features shown by green spheres of the Hypo1

Figure 3. (a) CoMFA contour map displayed with1 and superimposed on the SARS-CoV 3CLpro active site. (b) CoMSIA contour map displayed
with 1 and superimposed on the SARS-CoV 3CLpro active site. (c) CoMFA contour map displayed with10 and superimposed on the SARS-CoV
3CLpro active site. (d) CoMSIA contour map displayed with10 and superimposed on the SARS-CoV 3CLpro active site. The red contours represent
favored regions for negative charge, blue contours represent favored regions for positive charge, yellow contours represent disfavored regions for
steric interaction, green contours represent favored regions for steric interaction, cyan contours represent favored regions for hydrophobic interaction,
and white contours represent disfavored regions for hydrophobic interaction.
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hypothesis were observed around subsite S4 near Arg188. To
further explore the nature of the pharmacophore of SARS-CoV
3CLpro, the Hypo1 hypothesis was mapped onto the structures
of eight highly active SARS-CoV 3CLpro inhibitors, where1,
2, 3, 5, and6 were selected from the training set (Table 3 and
Figure 5a-e), and4, 7, and8 were selected from the test set
(Table 4 and Figure 5f-h). All of these inhibitors matched well
with three features, including hydrogen-bond donor, hydrogen-
bond acceptor, and hydrophobic features. The hydrogen-bond
donor features were mapped onto the N atom of the amide

group, the hydrogen-bond donor for all these inhibitors. The
hydrogen-bond acceptor features were mapped onto the S atom
of the thiazole group of1, the N atom of the methyl-pyrazole
group of2, the S atom of the thiophene group of3, the S atom
of thiazole group of5, the N atom of the isoxazole group of6,
the S atom of the thiophene group of4, the N atom of the
isoxazole group of7, and the N atom of the isoxazole group of
8 (Figure 5). The hydrophobic features are mapped onto various
substituted aryl or heteroaryl groups, such as chlorobenzene,
dichlorobenzene, and thiazole. Finally, the features of the

Table 6. Validation of the Hypo1 Hypothesis using the CatScramble
Program Implemented in the Catalyst Packagea

validation
no.

total
cost

fixed
cost

rms
deviation

correlation
(r)

configuration
cost

results for unscrambled
64.320 56.547 0.919 0.966 10.456

results for scrambled
trial 01 77.177 57.932 1.434 0.913 11.840
trial 02 110.535 52.911 2.524 0.695 6.820
trial 03 106.805 55.589 2.373 0.741 9.497
trial 04 106.482 55.880 2.369 0.743 9.789
trial 05 134.756 53.770 2.997 0.562 7.679
trial 06 122.493 57.562 2.680 0.650 11.471
trial 07 107.593 56.547 2.355 0.744 10.456
trial 08 110.834 55.880 2.467 0.705 9.789
trial 09 123.938 52.911 2.803 0.595 6.820
trial 10 154.702 44.966 3.491 0.000 0.000
trial 11 100.979 58.007 2.174 0.786 11.916
trial 12 90.083 56.547 1.777 0.864 10.456
trial 13 65.001 57.932 0.835 0.971 11.840
trial 14 155.464 44.966 3.503 0.000 0.000
trial 15 66.481 55.376 1.110 0.948 9.285
trial 16 81.002 52.911 1.766 0.863 6.820
trial 17 93.446 55.880 2.036 0.813 9.789
trial 18 90.438 55.880 1.924 0.834 9.789
trial 19 156.513 44.966 3.520 0.000 0.000

a Null cost ) 159.884.

Table 7. Measured Activities and Calculated Binding Free Energy of the SARS-CoV 3CLpro Inhibitors

energy components calculated for bindinga exp
SARS-CoV 3CLpro

inhibitor ∆Hvdw ∆Helec ∆GGB ∆Gnp -T∆Sconf ∆Gbinding IC50
b

1 -50.40 -29.75 40.17 -6.22 23.03 -23.17 3
2 -40.74 -20.61 27.48 -5.97 17.16 -22.68 10
3 -54.02 -16.31 28.01 -6.35 24.17 -24.50 11
4 -36.36 -20.81 28.82 -4.22 9.27 -23.30 12
5 -47.97 -27.08 35.10 -5.38 21.57 -23.76 14
6 -49.38 -25.46 30.05 -6.00 29.27 -21.52 15
7 -45.96 -29.07 33.28 -6.19 26.86 -21.08 15
8 -39.58 -30.68 37.54 -5.41 16.34 -21.79 15
9 -37.96 -43.40 46.54 -4.96 17.91 -21.87 30
10 -45.31 -50.22 60.04 -4.48 24.91 -15.06 40
11 -38.80 -15.00 27.73 -4.97 11.96 -19.08 40
12 -38.02 -31.16 36.97 -3.86 12.86 -17.32 45
13 -42.11 -37.27 45.11 -5.62 23.15 -16.74 60
14 -40.03 -52.47 58.68 -5.84 22.21 -17.45 60
15 -37.31 -34.14 36.34 -5.14 20.31 -19.94 100
16 -36.17 -33.27 28.74 -3.56 22.28 -21.98 200
17 -42.37 -36.72 37.85 -3.99 24.58 -20.65 200
18 -42.18 -36.39 37.81 -5.14 23.50 -22.40 200
19 -47.39 -29.60 36.67 -6.32 29.62 -17.02 200
20 -38.08 -28.02 40.05 -5.11 14.75 -16.41 200
21 -38.90 -31.77 36.29 -5.41 25.09 -14.70 250
22 -39.35 -21.99 32.60 -3.40 17.15 -14.99 300
23 -44.11 -36.49 45.95 -5.66 25.83 -14.48 300
24 -31.76 -48.47 53.06 -4.44 18.58 -13.02 300
25 -30.07 -43.11 45.69 -3.61 18.06 -13.04 350
26 -46.91 -23.44 34.00 -5.75 29.18 -12.92 400
27 -35.30 -13.75 22.93 -5.46 19.30 -12.28 500
28 -35.86 -27.12 29.23 -4.76 30.91 -7.60 >1000

a All values are in kcal/mol at 300 K.∆Hvdw, van der Waals energy;∆Helec, Coulombic energy;∆GGB, polar solvation free energy;∆Gnp, nonpolar
solvation free energy;∆Hgas ) ∆Hvdw + ∆Helec and ∆Gsolv ) ∆GGB + ∆Gnp; T∆Sconf, total entropy contribution;∆Gbinding (binding free energy))
∆Hgas + ∆Gsolv - T∆Sconf. b Measured IC50 values are inµM.

Figure 4. Features of the Hypo1 hypothesis displayed with10 and
superimposed on the SARS-CoV 3CLpro active site. The pharmacophore
features of the Hypo1 hypothesis are color coded as follows: the black
spheres represent two excluded volumes (E1 and E2), the blue spheres
represent the hydrophobic (H) feature, the magenta spheres represent
the hydrogen-bond donor (D), and the green spheres represent the
hydrogen-bond acceptor (A).
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excluded volume represented by black spheres were correctly
located because no bulky groups were found around those
spheres (Figure 5).

Correlation between Binding Free Energy and Inhibitory
Activity. The MM/GBSA (molecular mechanics-generalized
Born surface area) simulation method was applied to calculate
the binding free energies of 28 inhibitors. The solvent contribu-
tion and entropy penalty upon binding to the protein were

included in the calculation. The calculated binding free energies
(∆Gbinding) of 28 inhibitors and their corresponding experimental
activities (IC50) are shown in Table 7. The correlation between
calculated binding energies and experimental activities gave a
correlation coefficient (r2) of 0.667. To further understand major
determinants for the binding of inhibitors to the protein, the
binding free energy of each inhibitor was decomposed to
different contributions (i.e., van der Waals energy, Coulombic

Figure 5. Features of the Hypo1 hypothesis mapped onto the structures of eight highly active SARS-CoV 3CLpro inhibitors1, 2, 3, 5, 6, 4, 7, and
8. The pharmacophore features are color coded as follows: the black spheres represent two excluded volumes, the blue spheres represent the
hydrophobic feature, the violet spheres represent the hydrogen-bond donor, and the green spheres represent the hydrogen-bond acceptor.

3492 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 12 Tsai et al.



energy, solvation free energy, and entropy). As shown in Table
7, both van der Waals and electrostatic interactions with the
protein dominate the binding process. Particularly, the van der
Waals interactions are a major contributor to the binding of
inhibitors. Furthermore, superimposition of the predicted com-
plex structure of the best inhibitor (1) with that of the worst
one (28) provides insights into their difference in binding (Figure
6). The core structure of1 superimposes well with that of28
except for the slight movement of the benzene group to have a
better fit with the surrounding residues including Gly143 and
Cys145. However, the two additional aromatic rings of1,
thiazole and benzene groups, form strong interactions with
Glu166, Leu167, Pro168, and Gln192, leading to its increased
potency over28 (Figure 6). All of these results demonstrate
that the MM/GBSA analysis could be used to predict the binding
free energy that correlates with experimental activities and,
consequently, could be combined with current 3D-QSAR studies
to design the next generation of drug leads with more potency
against SARS-CoV.

Conclusion

In this article, we present a successful example of employing
structure-based virtual screening in combination with an ana-
logue search to discover a novel family of SARS-CoV 3CLpro

inhibitors. Twenty-eight compounds in the family with IC50

values that ranged from 3 to 1000µM were selected for further
3D-QSAR studies. Three QSAR models, including CoMFA,
CoMSIA, and pharmacophore hypothesis, have been constructed
and showed consistency among these three models. The
chemical interpretation of the contour maps generated by
CoMFA, CoMSIA, and the pharmacophore hypothesis could
be mapped well into the binding site of the SARS-CoV 3CLpro

and reveal the important sites where steric, hydrophobic, and
electrostatic interactions could significantly contribute to the

inhibition of the target protein. These 3D-QSAR models could,
therefore, guide the direction for compounds modification and
facilitate further lead optimization. Moreover, the compound
activities predicted by all of these 3D-QSAR models are in good
agreement with experimental data, demonstrating their predictive
ability and indicating that they could be used to estimate the
activities of new inhibitors. Finally, the binding free energy of
each inhibitor is calculated to gain insights into their binding
to the protein and assist in the explanation of the structure-
activity relationship obtained.

In conclusion, our study proves that the combination of
structure-based virtual screening and 3D-QSAR study could be
a useful approach to efficiently identify novel inhibitors from a
large chemical database and provide rationales for further lead
optimization. Our 3D-QSAR models could also be employed
to give reasonable estimations of the activity of newly designed
inhibitors before biological testing so that inhibitors predicted
to have strong affinity could be prioritized for chemical
synthesis.
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